Testamento matemático de Evariste Galois

El 30 de mayo de 1832, en un descampado de las afueras de París, Evariste Galois recibió un disparo en el estómago durante un duelo de honor que le hizo morir desangrado al día siguiente en un hospital.
El día anterior, 29 de mayo, se lo pasó escribiendo una carta-testamento dirigida a su amigo Auguste Chevalier. Galois no tenía muchas esperanzas de salir con vida. En esta larga carta encomendaba a Chevalier la tarea de hacer llegar sus trabajos a Gauss y a Jacobi, únicos matemáticos capaces, según su criterio, de comprenderle.

Está disponible online la carta-testamento. Haciendo click sobre ellas podréis verlas ampliadas.

página 1:

Mon cher Ami,

J’ai fait en analyse plusieurs choses nouvelles. Les unes concernent la théorie des équations algébriques; les autres, les fonctions intégrales.

Dans la théorie des équations, j’ai recherché dans quels cas les équations étaient résolubles par des radicaux ; ce qui ma donné occasion d’approfondir cette théorie, et de décrire toutes les transformations possibles sur une équation, lors meme qu’elle n’est pas résoluble par radicaux.

On pourra faire avec tout cela trois Mémoires.

Le premier est écrit; et, malgré ce qu’en a dit Poisson, je le maintiens avec les corrections que j’y ai faites.

Le second contient des applications assez curieuses de la théorie des équations. Voici le résumé des choses les plus importantes.

1* D’après les propositions II et III du premier Mémoires, on voit une grande différence entre adjoindre à une équation une des racines d’une équation auxiliaire, ou les adjoindre toutes.

Dans les deux cas, le groupe de l’équation se partage par l’adjonction en groupes tels que l’on passe de l’un à l’autre par une meme substitution; mais la condition que ces groupes aient les memes substitutions n’a lieu certainement que dans le second cas. Cela s’appelle la décomposition propre.

En d’autres termes, quand un groupe G en contient un autre H, le groupe G peut se partager en groupes, que l’on obtient chacun en opérant sur les permutations de H une meme substitution ; en sorte que G = H + H S + H S’ + … Et aussi, il peut se décomposer en groupes qui ont toutes les memes substitutions G = H + T H + T’ H + … Ces deux genres de décompositions ne coincident pas ordinairement. Quand elles coincident, la décomposition est dite propre.

Il est aisé de voir que quand le groupe d’une équation n’est susceptible d’aucune décomposition propre, on aura beau transformer cette équation, les groupes des équations transformées auront toujours le meme nombre de permutations.

Au contraire, quand le groupe d’une équation est susceptible d’une décomposition propre, en sorte qu’il se partage en M groupes de N permutations,

Más información sobre Evariste Galois:

http://abelgalois.blogspot.com/2006/04/homenaje-abel-y-galois.html

http://virtual.uptc.edu.co/ova/estadistica/docs/autores/pag/mat/Galois.asp.htm

http://www.geocities.com/grandesmatematicos/cap20.html

Teoría de Galois [capítulo 4, pág 83]// Dep. Matemáticas, Universidad de Extremadura

.

IMPORTANTE: La publicidad que aparece al final de este post no ha sido gestionada por la autora de este blog, por lo que no me hago responsable de los productos anunciados, ni me genera ningún tipo de ingresos, dicha publicidad es generada por WordPress, y a dicha empresa van dirigidas las ganancias que los “click” sobre las empresas anunciadas generen.

Anuncios

Acerca de nieves
Nací en Bustiello (Santa Cruz de Mieres), un pueblecito asturiano a la orilla del río Aller. Actualmente vivo en Santiago de Compostela e intento enseñar matemáticas en centros públicos de Galicia.

One Response to Testamento matemático de Evariste Galois

  1. darling alay dice:

    no logre comprender el testamento matematico de evariste galois

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: